
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 833–847
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Vibration and critical speeds of composite-ring disks for data storage
Kyo-Nam Koo a,�, George A. Lesieutre b

a Department of Aerospace Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea
b Department of Aerospace Engineering, Pennsylvania State University, University Park, PA 16802, USA
a r t i c l e i n f o

Article history:

Received 3 April 2009

Received in revised form

19 August 2009

Accepted 27 September 2009
Handling Editor: L.G. Tham
two annular disks, of which the inside is made of isotropic material and the outside is
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.09.040

responding author. Tel.: þ82 52 259 1261; fax

ail addresses: knkoo@mail.ulsan.ac.kr (K.-N. K
a b s t r a c t

A new concept for data storage disks is proposed to increase operating speed with

minimum changes in the geometry and design of conventional data storage disks. The

disk—named a composite-ring disk—is composed of a storage material inside and a thin

composite ring outside. Stress distributions are found for the rotating disk composed of

made of orthotropic material. The dynamic equation for a composite-ring disk in

rotation is formulated to calculate its natural frequencies and critical speeds. For the

solution of transverse vibration, a rotational symmetry condition is applied in the

circumferential direction and a finite element interpolation with Hermite polynomials is

performed in the radial direction. The results show that reinforcing a disk at the rim

increases critical speeds drastically, and can cause buckling in mode (0,0) which occurs

above the lowest critical speed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Optical and magnetic data storage devices read and write data on rotating disks. Rotation speed is a significant factor
limiting the data transfer rate. The RAMAC unveiled in 1956 was the first commercial computer that used a hard disk
drive [1]. The memory capacity of the system disk was only 4.8 megabytes (MB) in 50 disks 24 inches in diameter.
Around 250 MB of data can now be stored on a disk 3.5 inches in diameter with recent PMR (perpendicular magnetic
recording) technology [2]. According to Hitachi Ltd. [3], PMR technology will allow a recording density of up to one
terabit (Tb) per square inch. In the optical data storage industry, HDDS (holographic digital data storage) technology,
which stores data in three-dimensional space, is under intensive investigation for practical use. HDDS has high potential
due to fast transfer rates of up to hundreds of MB/s and storage densities of up to one terabyte (TB) of data per 120 mm
disk.

The higher the data transfer rate required by computers, the faster a storage disk should rotate. However, dynamic
instability due to high rotation speed can cause errors in reading and writing data. Dimensional stability against thermal
loading is another significant factor for a storage disk with high data density. Koo [4,5] showed that the use of composite
materials in rotating disks can increase critical speeds dramatically. Since fiber-reinforced composite materials have a high
specific modulus as well as a very low coefficient of thermal expansion (CTE) in the fiber direction, fiber-reinforced
composite materials can be regarded as suitable for data storage disks, as well as the rotating machinery discussed in
previous work, to enhance both vibrational and thermal stability.
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Nomenclature

a, b outer and inner radii of disk
c radius of disk at the material interface
C coefficient for in-plane displacements
C stiffness matrix
Dij bending stiffness
E, G elastic and shear moduli
h thickness of disk
Hi Hermite polynomials
J Jacobian
K stiffness matrix
m number of nodal circles
M mass matrix
n number of nodal diameters
Nr ;Ny;Nry in-plane force per length
r radial coordinate
re length of an element in radial direction
Dr radial width of composite ring
R function of radius
t time
T kinetic energy
u in-plane displacement of disk
U strain energy
w transverse displacement of disk
w nodal displacement vector in finite element

equation
e; g normal and shear strains
y tangential coordinate in rotating coordinate

k curvature of the mid-plane
m modulus ratio
n Poisson’s ratio
x normal coordinate in a mater element

(�1rxr1)
r mass density of a disk
s; t normal and shear stresses
f tangential coordinate in inertial coordinate
c rotation angle at node
o angular frequency
O rotating speed of disk
q
qr ;

q
qy ;

q
qt partial derivatives

(-) in-plane quantity related with centrifugal
inertia force

( � ) time derivative

Subscripts

1, 2 fiber and transverse direction of composite
material

i, o inner and outer disks
r; y radial and circumferential directions

Superscripts

b, f backward and forward traveling waves
(e) finite element
T transpose of vector or matrix
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However, all data storage disks must be fabricated with those materials which possess the optical or magnetic
characteristics to record data. For instance, 120 mm diameter CDs and DVDs consist of lead-in area (+ 46–50 mm),
program area (+ 50–116 mm), and lead-out area (+ 116–117 mm). Since the recording surface must be transparent, the
application of composite materials is limited to the opposite surface and may have a high manufacturing cost.

Instead of using composite materials in the recording area of data storage disks, a new disk design proposed in this
paper uses a composite ring to reinforce the rim of the disk with fibers along its hoop direction as shown in Fig. 1. The disk
will be called a composite-ring disk hereafter. The in-plane stresses acting on the composite-ring disk due to rotation are
found in order to study the effects of reinforcement on its dynamic characteristics. The dynamic equation for the
composite-ring disk in rotation is formulated to calculate the natural frequencies and critical speeds. For the solution of
transverse vibration, a rotational symmetric condition is applied in the circumferential direction and a finite element
Fiber composite
material

b

Isotropic
material

c

a

Fig. 1. Concept of composite-ring disk; Dr ¼ a� c: radius of reinforcement.
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interpolation with Hermite polynomials is performed in the radial direction. The numerical results show that the new
concept proposed in this paper is very effective in enhancing the dynamic stability of the data storage disk, thus enabling
higher rotation speeds and data transfer rates.
2. Governing equations and finite element formulation

2.1. Strain and kinetic energies of a rotating composite-ring disk

A composite-ring disk is composed of an isotropic inner disk for recording and a composite-ring with reinforcing fibers
in the circumferential direction at its rim as shown in Fig. 1. Since isotropic materials may be considered a subset of
orthotropic materials, the stress–strain relations for polar orthotropic materials in the plane stress state are used for both
materials:
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nryEy
1� nrynyr
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nyrEr

1� nrynyr
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2
666664
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777775

er

ey
gry

8><
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9>=
>; or r ¼ Ce; (1)

where r and e is the stress and strain vectors, respectively; C the stiffness matrix; and nry=Er ¼ nyr=Ey.
Two polar coordinate systems are introduced to describe the motion of a rotating disk with thickness h as shown in

Fig. 2. The ðr; yÞ-coordinate system rotates at a constant speed O fixed to the disk and the ðr;fÞ-coordinate system does not
rotate, instead remaining fixed in inertial space.

Since the disk dealt in this paper behaves as a thin elastic plate, it is assumed that:
�
 the transverse shear deformation and rotary inertia may be neglected;

�
 the in-plane forces induced by rotation is assumed to be unaffected by the transverse motion; and

�
 the effect of in-plane vibration is neglected.
The strain energy of a rotating thin disk consists of the bending strain energy UB and the strain energy associated with the
membrane stresses due to rotation UO:

U ¼ UB þ UO: (2)

The bending strain energy of an orthotropic disk can be expressed in the ðr; yÞ-coordinate system by

UB ¼
1

2

Z a

b

Z 2p

0
jTDjr dr dy; (3)

where j is the vector for the curvature of the mid-plane and D the bending stiffness matrix. The vector j and the matrix D
are defined as

j ¼
kr

ky

kry

8><
>:

9>=
>;;D ¼

Dr Dry 0

Dry Dy 0

0 0 Dk

2
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3
75; (4)
P (r, �)

z

b

a

qz r

h

�

�

�t

�

Fig. 2. Coordinates and geometry of rotating disk.
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where the elements of j and D are

kr ¼
q2w

qr2
; ky ¼

qw

rqr
þ

qw

r2qy2
; kry ¼ 2

q
qr

qw

rqy

� �
; (5a)

Dr ¼
Erh3

12ð1� nrynyrÞ
; Dy ¼

Eyh3

12ð1� nrynyrÞ
; Dry ¼ nryDy; Dk ¼

Gryh3

12
: (5b)

The strain energy associated with the membrane stresses caused by rotation is given by

UO ¼
1

2

Z a

b

Z 2p

0
Nr

qw

qr

� �2

þ Ny
qw

rqy

� �2
( )

r dr dy; (6)

where Nr and Ny are the in-plane force per unit length produced by centrifugal inertia force.
Since the natural frequencies are computed in the rotating coordinate system and then the natural frequencies in the

inertial coordinate system are obtained from Eq. (31), the kinetic energy associated only with the transverse vibration of a
disk is considered:

T ¼
1

2

Z a

b

Z 2p

0
rh

qw

qt

� �2

r dr dy: (7)

If we include the kinetic energy associated with disk rotation in Eq. (7), the frequencies in the inertial coordinate system are
directly obtained without Eq. (31).

2.2. In-plane loading due to rotation

The force resultants Nr and Ny can be determined from the equation of motion in the r-direction:

�
q
qr
ðrNrÞ �

qNry

qy
þ Ny ¼ rðrhrO2

Þ; (8)

where qNry=qy vanishes for an axisymmetric problem.
The strain–displacement relations under in-plane loading due to rotation are written by

er ¼
qur

qr
; ey ¼

1

r
ur þ

quy

qy

� �
; gry ¼ r

q
qr

uy

r

� �
þ

qur

rqy
: (9)

Integrating Eq. (1) through the thickness after substituting Eq. (9) into Eq. (1) with qð Þ=qy ¼ 0 for the axisymmetric
situation, Nr and Ny are expressed by

Nr ¼ Kr
dur

dr
þ nryKy

ur

r
; Ny ¼ nyrKr

dur

dr
þ Ky

ur

r
; (10)

where Kr ¼ Erh=ð1� nrynyrÞ and Ky ¼ Eyh=ð1� nrynyrÞ.
Substituting Nr and Ny obtained by using Eq. (10) into Eq. (8) yields a differential equation for the radial displacement of

points on the mid-plane:

r2 d2ur

dr2
þ r

dur

dr
� m2ur ¼ �

rhO2r3

Kr
; (11)

where m2 ¼ Ey=Er; m2 ¼ 1 and Kr ¼ K ¼ Eh=ð1� n2Þ for isotropic materials. The solutions to Eq. (11) for inner isotropic and
outer orthotropic disks, uri and uro, respectively, are obtained as

uriðrÞ ¼ C1ir þ C2ir
�1 �

rihO
2r3

8K
; (12a)

uroðrÞ ¼ C1orm þ C2or�m �
rohO2r3

ð9� m2ÞKr
: (12b)

The coefficients C1i, C2i, C1o, and C2o in Eq. (12) are determined from boundary conditions. The typical data storage disk is
fixed at the inner radius b and free at the outer radius a and its boundary conditions are given by:

uriðbÞ ¼ 0; (13a)

NroðaÞ ¼ 0: (13b)

The displacement and the force resultant in the radial direction should be continuous at the radius of the material interface,
cðbocoaÞ:

uriðcÞ ¼ uroðcÞ; NriðcÞ ¼ NroðcÞ: (14)
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Using Eqs. (10) and (12), the conditions in Eqs. (13) and (14) are expressed as follows:

bC1i þ b�1C2i ¼
rihO

2b3

8K
; (15a)

mð1þ mnryÞa
m�1C1o � mð1� mnryÞa

�m�1C2o ¼
ð3þ m2nryÞrohO2a3

ð9� m2ÞKr
; (15b)

cC1i þ c�1C2i � cmC1o � c�mC2o ¼
rihO

2c3

8K
�

rohO2c3

ð9� m2ÞKr
; (15c)

ð1þ nÞKC1i � ð1� nÞKc�2C2i � mð1þ mnryÞKrcm�1C1o þ mð1� mnryÞc
�m�1C2o

¼
ð3þ nÞrihO

2c2

8
�
ð3þ m2nryÞrohO2c2

9� m2
: (15d)

These simultaneous equations give the coefficients C1i, C2i, C1o, and C2o, with which the displacements and force resultants
can be expressed.

2.3. Finite element interpolation for transverse vibration

Since the transverse displacement wðr; yÞ of a disk in vibration is rotationally symmetric, it can be assumed to be

wðr; y; tÞ ¼ RðrÞ cosðnyÞ: (16)

Therefore, a finite element formulation is required only in the radial direction as done by Kirkhope and Wilson [6]. The
finite element interpolation expresses the displacement in a linear combination of shape functions:

RðrÞ ¼
X4

i¼1

Hiwi ¼ HTwðeÞ; (17)

where wi are the nodal displacements and Hi are the Hermite interpolation functions given in Appendix A. For an element
length re in the radial direction, they are given by

wðeÞ ¼ fw1 c1 w2 c2g
T; (18)

H ¼ fH1 H2 H3 H4g
T: (19)

The strain and kinetic energies of an element can be discretized as

UðeÞB ¼
1

2
wðeÞTðlp

Z
re

BTDBr drÞwðeÞ; (20)

UðeÞO ¼
1

2
wðeÞT lp

Z
re

rNr
dH

dr

dHT

dr
þ

n2

r
NyHHT

 !
dr

" #
wðeÞT; (21)

TðeÞ ¼
1

2
_wðeÞT lp

Z
re

rhHHTr dr

� �
_wðeÞ; (22)

where

l ¼
2 for n ¼ 0

1 for nZ1
;

(
(23)

B ¼ bHT and b ¼
d2

dr2

 !
d

r dr
�

n2

r2

� �
2n

d

r dr
þ

1

r2

� �( )T

: (24)

The Lagrange equation with these expressions for the discretized energies then yields the equations of motion for an
element:

MðeÞ €wðeÞ þ ðKðeÞB þO2KðeÞO Þw
ðeÞ ¼ 0ðeÞ; (25)

where the element stiffness and mass matrices are defined by

KðeÞB ¼ lp
Z

re

BTDBr dr; (26)
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KðeÞO ¼ lp
Z

re

rNr
dH

dr

dHT

dr
þ

n2

r
NyHHT

 !
dr; (27)

MðeÞ ¼ lp
Z

re

rhHHTr dr: (28)

The integration in Eqs. (26)–(28) is performed in normal coordinate by using the Gauss quadrature. The elements of KðeÞB ,
KðeÞO , and MðeÞ are given in Appendix A.

The in-plane loads Nr and Ny at the Gauss points can be obtained by interpolating linearly in an element as follows:

NrðrÞ ¼
Nrðkþ1Þ � NrðkÞ

re
ðr � rkÞ þ NrðkÞ; (29a)

NyðrÞ ¼
Nyðkþ1Þ � NyðkÞ

re
ðr � rkÞ þ NyðkÞ (29b)

where a starting node in the k-th element is regarded as k.
Table 1
Material properties of polycarbonate, GFRP, and CFRP.

Material E1 (GPa) E2 (GPa) G12 (GPa) n12 r (kg/m3)

Polycarbonate 2.2 2.2 0.797 0.38 1220

GFRP(E-glass/epoxy) 38.6 8.27 4.14 0.26 1800

CFRP(T300/N5208) 181.0 10.3 7.17 0.28 1600

Table 4
Variation of natural frequencies of non-rotating disks with radius width of CFRP ring.

Dr ðmmÞ Natural frequencies of each mode (Hz)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

0.0 131.7 125.0 152.3 273.5 468.1 718.0

1.0 148.5 127.1 196.6 492.7 941.4 1481.9

2.0 157.5 128.2 228.1 624.1 1173.5 1752.0

3.0 163.4 128.8 253.0 722.8 1330.1 1909.6

4.0 168.0 129.3 273.8 803.4 1451.4 2029.0

5.0 171.8 129.8 291.6 872.4 1554.8 2133.6

Table 3
Variation of natural frequencies of non-rotating disks with radius width of GFRP ring.

Dr ðmmÞ Natural frequencies of each mode (Hz)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

0.0 131.7 125.0 152.3 273.5 468.1 718.0

1.0 134.0 123.5 161.2 329.5 602.7 964.6

2.0 136.0 122.3 169.0 372.3 696.4 1122.0

3.0 137.7 121.3 176.0 407.4 769.9 1241.7

4.0 139.3 120.5 182.4 437.2 831.4 1340.9

5.0 140.9 119.8 188.2 463.3 884.7 1427.1

Table 2

Natural frequencies (Hz) of CFRP-ring disk with Dr ¼ 1.

Mode (0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

0 rev/min Present 148.5 127.1 196.6 492.7 941.4 1481.9

NASTRAN 148.4 126.9 196.4 492.8 942.1 1482.7

10,000 rev/min Present 191.0 222.9 367.9 666.8 1095.9 1609.9

NASTRAN 190.8 222.8 367.8 666.8 1096.0 1609.9
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After assembling all the elements and assuming the motion to be harmonic, the natural frequencies in the rotating
coordinate system ðr; yÞ can be computed from the following eigenvalue problem:

ðKB þO2KO �o2MÞw ¼ 0: (30)

A natural frequency in the rotating coordinates ðr; yÞ is split into two natural frequencies in the inertial coordinates ðr;fÞ as

of
mn ¼ omn þ nO; (31a)

ob
mn ¼ omn � nO; (31b)
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where of
mn is the natural frequency of the forward traveling wave and ob

mn the natural frequency of the back-
ward traveling wave. The subscripts m and n in Eq. (31) denote the number of nodal circles and diameters,
respectively.

A critical speed can be determined when the backward frequency ob
mn vanishes. In this situation, the propagation

speed of the backward traveling wave in the rotating frame is equal to the disk rotation speed. This means that the
backward traveling wave is stationary in the inertial frame at the critical speed. A stationary transverse load applied to
the disk at critical speeds, without any damping mechanism, would cause the amplitude of transverse motion to be
unbounded.
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3. Results and discussion

The proposed concept for data storage disks is applied to an optical disk with typical dimensions:

b ¼ 15 mm; a ¼ 60 mm; h ¼ 1:2 mm

where b is the inner radius along which the disk is fixed and a the outer radius along which the disk is free. Instead of using
composite materials in the whole disk, the disk is reinforced only at the rim by fibers along the hoop direction as shown in
Fig. 1. The radial width of the composite ring is defined as Dr ¼ a� c, where c is the radius to the interface between
isotropic and composite materials.
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Fig. 5. Radial stress sr=O2 and circumferential stress sy=O
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Dr ¼ 4 mm; and (f) Dr ¼ 5 mm.
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3.1. Disks consisting of practical materials

A disk consists of a PC (polycarbonate) inner disk for recording and a fiber-reinforced composite ring at the rim for
reinforcement. Material properties used in this study are displayed in Table 1. E-glass/epoxy and T300/N5208 were chosen
in this study as the typical GFRP (glass fiber reinforced plastic) and CFRP (carbon fiber reinforced plastic), respectively. The
material constants for composite ring should be assigned in the following way: Er ¼ E2, Ey ¼ E1, Gry ¼ G21 ¼ G12, nry ¼ n21.
About 45 finite elements with an equal length with which the solution was sufficiently converged are used in the radial
direction for all cases in this study.

In order to validate the present method, in Table 2 are displayed the natural frequencies of the CFRP-ring disk with
Dr ¼ 1 mm in the rotating coordinate system. In MSC/NASTRAN analysis, the disk was modeled with 45 elements along the
radial direction and 144 elements along the circumferential direction. The normal mode analysis of a rotating disk in MSC/
NASTRAN should utilize a solution sequence SOL 106 [7]. The results of MSC/NASTRAN in Table 2 do not have the effects of
transverse shear and rotary inertia. It is displayed in Table 2 that the present results are in very good agreement with the
finite element results.
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Tables 3 and 4 display how the natural frequencies of a non-rotating disk change as the radial width of the GFRP and
CFRP rings changes. The mode ðm;nÞ has m nodal circles and n nodal diameters. It is observed in Table 3 that the GFRP ring
increases the natural frequencies of all modes except for mode (0,1). This implies that the GFRP ring may make an
improvement of the dynamic stability of the rotating disk by the GFRP ring, but not much. Noticeably, the 5 mm GFRP ring
decreases the natural frequency of mode (0,1) by 4 percent. This is because an increment in the bending stiffness for mode
(0,1) is very small but the mass effect for mode (0,1) relatively increases much more. As displayed in Table 4, the CFRP ring
increases the natural frequencies of all modes. The increment in the natural frequency due to the CFRP ring is very small in
mode (0,1) compared with that in the other modes. This is due to the fact that the effect of stiffening in bending is very
small in mode (0,1) because the disk bends mostly in the polycarbonate with little deformation in the CFRP ring. The
natural frequency of mode (0,1) increases by 4 percent for the width Dr ¼ 5 mm whereas that of mode (0,2) increases by 91
percent. In general, the use of a composite ring with high modulus can drastically increase the critical speed since the
critical mode in rotating disks is typically mode (0,2) or (0,3).

Figs. 3 and 4 show the natural frequencies of rotating disks with a GFRP ring and a CFRP ring, respectively. In those
figures, ðm;nÞf and ðm;nÞb refer to the forward and backward traveling modes in the inertial frame, respectively. Fig. 3(a)
shows that the lowest critical speed of the original CD (corresponding to Dr ¼ 0) is about 7060 rev/min in mode (0,2). Fig. 3
shows that the GFRP ring can effectively increase the critical speed. In particular, the 5 mm GFRP ring increases the critical
speed by 65 percent in comparison with the original polycarbonate disk. It is observed in Fig. 4(b) that even the 1 mm CFRP
ring increases the critical speed by 2.2 times compared with the polycarbonate disk.

Note that the frequency of mode (0,0) becomes zero at a certain rotation speed around 45,528 rev/min for Dr ¼ 1 mm. This
phenomenon corresponds to buckling since mode (0,0) does not have a mode split. A buckling speed can be defined as a
speed at which the natural frequency in a rotating coordinate system is zero. Therefore, a bucking speed can be distinguished
from a critical speed by checking the natural frequency in the rotating coordinate system instead of in the inertia
coordinate system. Buckling occurs only in the CFRP-ring disks but not in the GFRP-ring disks. This is because
the high stiffness of the CFRP ring in the fiber direction acts as a constraint to induce a compressive stress field in the
polycarbonate area. Figs. 5 and 6 where the unit of O is rad/s illustrate the radial and circumferential stresses (sr and sy),
induced by rotation, of the GFRP-ring and CFRP-ring disks, respectively. The isotropic disk has only the tensile stress in the
radial direction. Only tensile stress is induced in the isotropic disk by rotation whereas the compressive stress acts in
the interface area of the composite-ring disk. This is due to the fact that the composite ring prevents the inside disk from
extending. It is observed in the figures that there is a discontinuity of circumferential stress at the interface of the two
materials. The low level of the compressive stress is apparent in a small area for the GFRP-ring disk as shown in Fig. 5.
However, as shown in Fig. 6, the level of the compressive stress in the CFRP-ring disk is much higher and acts over a much
wider area. This suggests that buckling may be a concern in a rotating disk with a composite ring having a very high modulus.

Fig. 7 summarizes the critical and buckling speeds of the disks addressed in this paper. The number on each bar refers to
the critical mode. The dynamic stability of an isotropic disk can be dramatically enhanced by reinforcing its rim with
composite material. Even though the CFRP-ring disk is susceptible to buckling, it has a buckling speed higher than the
lowest critical speed. Another observation is that the CFRP-ring disk with Dr ¼ 5 mm does not have the lowest buckling
speed though it has the highest level and widest area of compressive stress among the disks. This is due to the fact that
buckling is dependent on the characteristic dimension of a structure or radius for a disk in addition to the stress level.

Figs. 8 and 9 compares the mode shapes of the PC and CFRP-ring disks at various speeds, respectively. There seems to be
little difference between the mode shapes of the PC disk at non-rotating and critical speeds, as shown in Fig. 8. This implies
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that the mode shape of a non-rotating isotropic disk can be used to determine the critical speed of the rotating disk. Fig. 9
shows that the mode shape of the composite-ring disk is more dependent on rotating speed than that of the PC disk. And
the mode shape at the buckling speed is dramatically different from the others. Therefore, the functions used for a series
solution should be carefully selected in the buckling analysis of a rotating composite-ring disk.
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3.2. Effects of modulus and density ratios

In order to gain more general insight into the dynamic behavior of rotating composite-ring disks, the effect of the
modulus ratio of composite material and the density ratio between isotropic and composite materials on the critical and
buckling speeds was studied. The modulus ratio E1=E2 is defined as a ratio of elastic moduli in the fiber and transverse
directions. The density ratio ro=ri is the ratio of the density of the composite ring, ro to the density of the inner disk
material, ri. The other geometric parameters and material constants used in this study are given by

b=a ¼ 0:25; Dr=a ¼ 0:025; a=h ¼ 400; G12=E2 ¼ 0:5; n12 ¼ 0:25:

For E1=E2 ¼ 1, which corresponds to an isotropic material, G12=E2 is changed to 0.4 for material consistency.
Fig. 10 shows the critical and buckling speeds of composite-ring disks with various modulus and density ratios. The

critical speed increases as the modulus ratio increases for all density ratios. The critical speed increases very little over the
range up to E1=E2 ¼ 80 and the critical mode is shifted from mode (0,2) to a higher mode. The critical speed is also lower for
higher density ratios. This is because a higher density ratio reduces the natural frequency. As seen earlier, Fig. 9(b) indicates
that the high stiffness of the composite ring in the hoop direction prevents the disk from extending, so the disk is more
susceptible to buckling. Although the high modulus ratio adversely affects the buckling, the buckling speed is still higher
than the critical speed in the practical range of the modulus ratio for all density ratios. A higher density ratio also increases
the buckling speed for a given modulus ratio. This is due to the fact that the more mass the composite ring has, the more
tensile stress is induced by centrifugal force.

Fig. 11 illustrates the variation in stresses with the change of the modulus and density ratio of the composite-ring disk.
As the modulus ratio increases, the radial stress level decreases and its compressive field becomes wider. This is due to the
fact that the high stiffness of the composite ring prevents the inner disk from extending. This reduces the buckling speed
for the disk with a high stiffness ratio. Finally, the stresses in the inner disk of the composite-ring disk with high modulus
ratio are less dependent on density ratio than in the composite-ring disk with low modulus ratio.
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4. Conclusions

Rotating disks may suffer from dynamic instability so that their operating speed is limited by the critical speed. A
demand for higher data transfer rates in computers requires higher rotational speed in optical and magnetic data storage
disks. The results in this paper show that data storage disks reinforced by an outer composite ring have increased critical
speeds. The benefit and effectiveness of the composite-ring disk was verified by numerical studies. The dynamic equation
for a rotating composite-ring disk was formulated to calculate natural frequencies and critical speed. A rotational
symmetric condition was applied in the circumferential direction and a finite element interpolation was performed in the
radial direction for the solution of transverse vibration.

The reinforcement of an isotropic disk with a composite ring was shown to increase the critical speed drastically.
Although buckling may occur in composite-ring disks, the buckling speed is greater than the critical speed for composite-
ring disks with practical moduli and density ratios. A composite ring can be very effective in increasing the critical speed of
data storage disks with no significant changes in shape or mass.
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Appendix A

Eqs. (26)–(28) are evaluated in normal coordinate xð�1rxr1Þ instead of in global coordinate rðrkrrrrkþ1Þ where rk

and rkþ1 denote the coordinates of the inner and outer end nodes of the k-th element.
The Hermite polynomials in the normal coordinate xð�1rxr1Þ are defined by

H1ðxÞ ¼ 1
4ð2� 3xþ x3

Þ; (A.1)

H2ðxÞ ¼
re

8
ð1� xþ x2

þ x3
Þ; (A.2)

H3ðxÞ ¼ 1
4ð2þ 3x� x3

Þ; (A.3)

H4ðxÞ ¼
re

8
ð�1� xþ x2

þ x3
Þ: (A.4)

For the stiffness and mass matrices, we have

K ðeÞBij ¼ lp
Z

re

Dr
d2Hi

J2 dx2

 !
d2Hj

J2 dx2

 !
þ Dry

d2Hi

J2 dx2

 !
dHi

xJ dx
�

n2Hj

x2

 !
þ Dry

dHi

xJ dx
�

n2Hi

x2

 !
d2Hj

J2 dx2

 !"

þDy
dHi

xJ dx
�

n2Hi

x2

 !
dHj

xJ dx
�

n2Hj

x2

 !
þ 4n2Dk

dHi

xJ dx
�

Hi

x2

 !
dHj

xJ dx
�

Hj

x2

 !#
xjJjdx; (A.5)

KðeÞOij ¼ lp
Z 1

�1
xNrðxÞ

dHiðxÞ
J dx

dHjðxÞ
J dx

þ
n2

x2
NyðxÞHiðxÞHjðxÞ

" #
xjJjdx; (A.6)

MðeÞij ¼ lp
Z 1

�1
rhHiðxÞHjðxÞxjJjdx; (A.7)

where J ¼ dr=dx ¼ re=2.
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